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Motivation

Coastal Wave Impacts:

Runup / Overtopping

e Drive nearshore currents
* Mobilize sediment
 Damage infrastructure

Reefs and Vegetation:
* Attenuate waves
* Reduce water levels & currents
* Reduce coastal erosion




Modeling Nearshore Waves

Model Features Phase — Averaged Phase - Resolved

Key Equations Energy Flux Boussinesg-type

Wave Linearity Linear Non-linear (3-way
interactions)

Wave Breaking Depth-limited Empirical
Reflection & Neglected Included
Diffraction

Dissipation & Neglected Neglected
Transmission

Within Reef

Examples SWAN XBEACH
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Wave Height Reduction Across Coastal Habitats
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Reefs

Natural and artificial reefs provide wave
dissipation to reduce wave impact on the
shoreline

Reef Types
* Natural Reef
e Coral
* Rock
 Artificial Reef Structures
e Submerged
* Emergent
e QOthers
* Qyster



Modelmg Waves on Reefs: Example From the USA
a USGS
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 Transects every 100 m (30,167 total)
* Non-linear wave model XBeach
 \Wave propagation
* Long waves
e Sediments and Currents

e Originally for sandy beaches — configured for coral

rEEfS Reguero, Beck, Storlazzi et al., 2018



A Coastal Problem Due To Reef Loss: Grenville Bay, Grenada

— 1951

2003 gt # : = | CCE

2018
Grenville 2003-10-24 |

From Reguero, et al., 2018




Designing Reef Restoration for Coastal Resilience: Grenada
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Reguero, Beck, et al.. 2018. Coral reefs for coastal protection ...an_engineering case study in Grenada. J.
Env. Mgmt. 210:146-161.



https://doi.org/10.1016/j.jenvman.2018.01.024

Designing Reef Restoration for Coastal Resilience: Grenada
S

e (this one with blocks) with (CCE
from '.e nursery placed along S
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Reguero, Beck, et al.. 2018. Coral reefs for coastal protection ...an_engineering case study in Grenada. J.
Env. Mgmt. 210:146-161.



https://doi.org/10.1016/j.jenvman.2018.01.024

Designing Reef Restoration for Coastal Resilience: Grenada

Coral transplants have stabilized or the
rate of loss has decreased

7

Env. Mgmt. 210:146-161.


https://doi.org/10.1016/j.jenvman.2018.01.024

Oyster Domes Oyster Shell Bags

Benefit #1: Shoreline stabilization — reduce wave energy; trap sediment
Benefit #2: Water Quality Improvement

Limitation #1: Porous, less effective than coral reefs
Limitation #2: Prefer low wave-energy environments

From Kirkpatrick, 2013.
http://www.oyster-restoration.org/wp-content/uploads/2013/02/9.-Jason-Kirkpatrick.pdf



Field Studies
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Lab Studies of Waves on Reefs {(ECE
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e Empirical, numerical, and lab tools to evaluate wave
dissipation by reefs
e Research needs:

Reef Summary

Characterize stability ey -
Characterize porosity (dissipation/transmission) #8
Field and Lab Studies for Validation ‘
General Parameters for Simplified Models
Design guidance

Quantify additional environmental benefits
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Vegetation

Vegetation provides wave dissipation to reduce wave height as a function of:
e Stem height
e Stem diameter
e Stem density
* Length of vegetation field
* Stiffness of the vegetation
* Submergence depth
* Wave parameters
* Drag coefficient
Morison-type equation
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Dalrymple (1984)
Mendez and Losada (2004) ~ irregular waves



Bulk Drag Coefficient C,

Drag coefficient parameterized based

on lab or field data
* Reynolds number

2
* Keulegan-Carpenter number \ + N=200
* No comprehensive formulation for C, " \ —Regress Submerged | |
* Vary with season 16 \ A N=400 ]
e Vary with depth/submergence 14
e >70 parameterization in literature 12 e
(mostly lab based) S ::; A
u.d 08
Re = e L
v ¢ Cp=(910/Re) + -
1 0.22 |
ucTy 0-2
KC = Standard Error Submerged = 0.034
0 T T .
bv 0 500 1000 1500 2000 2500 |

Re

u. ~ characteristic velocity, d ~ depth, v ~ kinetic viscosity, T, ~ peak wave period, b, ~ stem diameter

—
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Lab Experiments (Anderson & Smith 2014)
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0.14,

Trends in Wave Attenuation

0.12
0.1
Wave attenuation was found to:
* increase with stem density
* increase with submergence ratio o 0.08
* slightly increase with incident wave height £
* marginally decrease with longer waves X 0.06.
during emergent conditions '
0.04
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Wave Spectra
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Deviations of slope of spectral tail,
1.5f, to 3f,

Preferential dissipation of higher
frequencies

dissipation of higher frequencies
dependent on stem density and
submergence ratio




Example: Jamaica Bay, NY

Depth [m]

{(ECE

2018

Bathymetry



Simulations with Spectral Wave Model (STWAVE) {(}CE
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Three wind & water level combinations
18.5 m/s winds, 1.3 m WL
22.1 m/s winds, 2.0 m WL
26.0 m/s winds, 2.9 m WL
Four vegetation states
No vegetation, existing bathymetry
Existing vegetation and bathymetry
Moderate vegetation w/ modified bathymetry
Extensive vegetation w/ modified bathymetry

Spartina alterniflora in the low marsh, Spartina patens in the high marsh, and Phragmites
Cp,~ 0.35,N =400, b,=0.6 cm




Vegetation States

No Vegetation

Existing Vegetation

Moderate Vegetation : :
' : Extensive Vegetation




26 m/s winds, 2.9 m WL

Wave Height im)

No vegetation 12 Existing vegetation

Moderate vegetation _
Extensive vegetation



Example: Hamilton Wetland, California
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Example: Hamilton Wetland, California {(ECE

Compare wave reduction for Berms (linear feature) vs. Mounds (circular feature)

Numerical simulations:
e Winds of 15 and 20 m/s (14-yr wind record at Richmond, CA)
e Water levels of + 0.5 and +1.0 MSL
e 8 wind directions (N, NE, E, SE, S, SW, W, NW)
e With and without vegetation
* Pickleweed
* Within depth range of +0.4-0.95 m MSL
* C,=0.1, stem height=0.6 m, density = 300/m? diameter = 0.01 m (Northwest Hydraulic Consultants
2011)

2018




% RMS Reduction in Wave Height

Example: Hamilton Wetland, California -

15 m/s Wind, +0.5 m MSL Water Level 15 m/s Wind, +1.0 m MSL Water Level
as.0 mBerm 35.0 mBerm
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Linear berms produced a greater reduction in wave height than circular mounds:

25-32% at 0.5m MSL Berms versus 11-14% at 0.5m MSL Mounds
Wave height attenuation by berms AND mounds decreases significantly once they are submerged (75% reduction
Imv. 0.5m MSL)
Vegetation increases wave height reductions (when vegetation is submerged), vegetation impact greater for
circular mounds




Vegetation Summary

Wave dissipation is key, but other factors may
come into play for reducing currents and
sediment transport
Need sufficient “space” for dissipation
Research needs:

Better characterization of vegetation types and

Cd

Understanding of resilience to storms

(breakage, failure, recovery)

Seasonal variability

Validation

Design guidance



Contact Details
Siddharth Narayan: sidnarayan@ucsc.edu
Jane McKee Smith: Jane.M.Smith@usace.army.mil
Mary Bryant: Mary.A.Bryant@usace.army.mil

For Further Information on Reef Modelling:
Michael W. Beck: mbeck@tnc.org

Borja G. Reguero: breguero@tcsc.edu

Inigo J. Losada: inigo.losada(@ ican.es
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