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Motivation

Coastal Wave Impacts:
• Runup / Overtopping
• Drive nearshore currents
• Mobilize sediment
• Damage infrastructure

Reefs and Vegetation:
• Attenuate waves
• Reduce water levels & currents 
• Reduce coastal erosion



Modeling Nearshore Waves

Model Features Phase – Averaged Phase - Resolved

Key Equations Energy Flux Boussinesq-type

Wave Linearity Linear Non-linear (3-way 
interactions)

Wave Breaking Depth-limited Empirical

Reflection & 
Diffraction

Neglected Included

Dissipation & 
Transmission 
Within Reef 

Neglected Neglected

Examples SWAN XBEACH



Wave Height Reduction Across Coastal Habitats

From Narayan et al. 2016
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Wave Energy Proportional to H2



Reefs

Natural and artificial reefs provide wave
dissipation to reduce wave impact on the
shoreline

Reef Types
• Natural Reef

• Coral
• Rock

• Artificial Reef Structures
• Submerged
• Emergent

• Others
• Oyster



Modeling Waves on Reefs: Example From the USA

Reguero, Beck, Storlazzi et al., 2018



Modeling Waves on Reefs: Example From the USA

Reguero, Beck, Storlazzi et al., 2018

• Transects every 100 m (30,167 total)
• Non-linear wave model XBeach

• Wave propagation
• Long waves
• Sediments and Currents

• Originally for sandy beaches – configured for coral 
reefs



Current & sediment tranport

Mangrove Lost

Field inspection (28 Jan.)  and local reporting 

The Coastal Problem A Coastal Problem Due To Reef Loss: Grenville Bay, Grenada

From Reguero, et al., 2018



Reguero, Beck,  et al..  2018. Coral reefs for coastal protection …an  engineering case study in Grenada. J. 
Env. Mgmt. 210:146-161.

Designing Reef Restoration for Coastal Resilience: Grenada

https://doi.org/10.1016/j.jenvman.2018.01.024


Reguero, Beck,  et al..  2018. Coral reefs for coastal protection …an  engineering case study in Grenada. J. 
Env. Mgmt. 210:146-161.

Designing Reef Restoration for Coastal Resilience: Grenada

2-tier pilot submerged breakwater 
structure  (this one with blocks) with 
corals from the nursery placed along 
their sides

https://doi.org/10.1016/j.jenvman.2018.01.024


Reguero, Beck,  et al..  2018. Coral reefs for coastal protection …an  engineering case study in Grenada. J. 
Env. Mgmt. 210:146-161.

Designing Reef Restoration for Coastal Resilience: Grenada

2016 

https://doi.org/10.1016/j.jenvman.2018.01.024


Oyster Reefs For Shoreline Stabilization: MacDill Air Force Base

Oyster Domes Oyster Shell Bags

Benefit #1: Shoreline stabilization – reduce wave energy; trap sediment
Benefit #2: Water Quality Improvement
Benefit #3: Habitat Enhancement – diversity, encourages marsh /mangrove recruitment

Limitation #1: Porous, less effective than coral reefs
Limitation #2: Prefer low wave-energy environments

From Kirkpatrick, 2013.
http://www.oyster-restoration.org/wp-content/uploads/2013/02/9.-Jason-Kirkpatrick.pdf



Field Studies



Lab Studies of Waves on Reefs



Reef Summary

• Empirical, numerical, and lab tools to evaluate wave 
dissipation by reefs

• Research needs:
• Characterize stability
• Characterize porosity (dissipation/transmission)
• Field and Lab Studies for Validation
• General Parameters for Simplified Models
• Design guidance
• Quantify additional environmental benefits



Vegetation
Vegetation provides wave dissipation to reduce wave height as a function of:

• Stem height
• Stem diameter
• Stem density
• Length of vegetation field
• Stiffness of the vegetation
• Submergence depth
• Wave parameters
• Drag coefficient

Morison-type equation

Dalrymple (1984)
Mendez and Losada (2004) ~ irregular waves



Bulk Drag Coefficient CD
Drag coefficient parameterized based
on lab or field data

• Reynolds number
• Keulegan-Carpenter number
• No comprehensive formulation for CD

• Vary with season
• Vary with depth/submergence

• >70 parameterization in literature
(mostly lab based)

CD = (910/Re) + 
0.22 

𝑅𝑅𝑅𝑅 =
𝑢𝑢𝑐𝑐𝑑𝑑
𝜈𝜈

𝐾𝐾𝐶𝐶 =
𝑢𝑢𝑐𝑐𝑇𝑇𝑝𝑝
𝑏𝑏𝑣𝑣

uc ~ characteristic velocity, d ~ depth, ν ~ kinetic viscosity, Tp ~ peak wave period, bv ~ stem diameter



Lab Experiments (Anderson & Smith 2014)

Three water depths (h): 
30.5 cm, 45.7 cm, 53.3 cm

►correspond to ls/h ratios of 
1.0 (emergent), 0.91, 0.78

Irregular waves  
► Tp ~ 1.25 s to 2.25 s
► Hm0 ~ ranging from 5.0 cm to 

19.2 cm 



Trends in Wave Attenuation

Wave attenuation was found to:
• increase with stem density
• increase with submergence ratio
• slightly increase with incident wave height
• marginally decrease with longer waves 

during emergent conditions



Wave Spectra

• Deviations of slope of spectral tail, 
1.5fp to 3fp

• Preferential dissipation of higher 
frequencies 

• dissipation of higher frequencies 
dependent on stem density and 
submergence ratio



Example:  Jamaica Bay, NY

Bathymetry



Simulations with Spectral Wave Model (STWAVE)

Three wind & water level combinations
18.5 m/s winds, 1.3 m WL
22.1 m/s winds, 2.0 m WL
26.0 m/s winds, 2.9 m WL

Four vegetation states
No vegetation, existing bathymetry
Existing vegetation and bathymetry
Moderate vegetation w/ modified bathymetry
Extensive vegetation w/ modified bathymetry

Spartina alterniflora in the low marsh, Spartina patens in the high marsh, and Phragmites
CD ~ 0.35, N = 400, bv=0.6 cm



Vegetation States
No Vegetation Existing Vegetation

Moderate Vegetation
Extensive Vegetation



26 m/s winds, 2.9 m WL
No vegetation Existing vegetation

Moderate vegetation
Extensive vegetation



Example: Hamilton Wetland, California



Example: Hamilton Wetland, California
Compare wave reduction for Berms (linear feature) vs. Mounds (circular feature)
Numerical simulations:
• Winds of 15 and 20 m/s (14-yr wind record at Richmond, CA)
• Water levels of + 0.5 and +1.0 MSL
• 8 wind directions (N, NE, E, SE, S, SW, W, NW)
• With and without vegetation

• Pickleweed
• Within depth range of +0.4-0.95 m MSL
• CD = 0.1, stem height=0.6 m, density = 300/m2 diameter = 0.01 m (Northwest Hydraulic Consultants 

2011)



Example: Hamilton Wetland, California

Linear berms produced a greater reduction in wave height than circular mounds:
25-32% at 0.5m MSL Berms  versus  11-14% at 0.5m MSL Mounds

Wave height attenuation by berms AND mounds decreases significantly once they are submerged (75% reduction 
1m v. 0.5m MSL)
Vegetation increases wave height reductions (when vegetation is submerged), vegetation impact greater for 
circular mounds



Vegetation Summary

• Wave dissipation is key, but other factors may 
come into play for reducing currents and 
sediment transport

• Need sufficient “space” for dissipation
• Research needs:

Better characterization of vegetation types and 
Cd
Understanding of resilience to storms 
(breakage, failure, recovery)
Seasonal variability
Validation
Design guidance



Middle Township, NJ
Photo credit: Metthea Yepsen, TNC

Thank You
Contact Details

Siddharth Narayan: sidnarayan@ucsc.edu
Jane McKee Smith: Jane.M.Smith@usace.army.mil

Mary Bryant: Mary.A.Bryant@usace.army.mil

For Further Information on Reef Modelling:
Michael W. Beck: mbeck@tnc.org

Borja G. Reguero: breguero@ucsc.edu
Inigo J. Losada: inigo.losada@unican.es
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